
Master’s Thesis

Computer Science

Ahoy: A Proximity-Based Discovery Protocol

Robbert Haarman

January 18, 2007

Graduation Committee
Dr. Ir. Geert Heijenk (University of Twente)
Ir. Patrick Goering (University of Twente)
Fei Liu M.Sc. (University of Twente)
Dr. Ir. Hartmut Benz (WMC)

Design and Analysis of Communication Systems
Faculty of Electrical Engineering, Mathematics, and Computer Science
University of Twente

Abstract

This report describes the design and implementation of Ahoy, a decen-
tralized service discovery protocol based on attenuated Bloom filters. The
protocol is specifically designed with mobile ad-hoc networks (MANETs)
in mind: it allows the discovery of services located multiple hops away,
generates little network traffic, uses no central directories or other infras-
tructure, and detects and handles changes in network topology. Atten-
uated Bloom filters are used to efficiently disseminate information that
allows queries to be propagated to only those nodes likely to have knowl-
edge of the requested service.

The implementation of Ahoy demonstrates the feasibility of a service
discovery protocol based on attenuated Bloom filters. It also provides a
platform for further experimentation. Measurements show Ahoy to have
a very low impact on the amount of network traffic.

This report describes the Ahoy protocol and its implementation. It
discusses a number of design decisions and the choices that were taken, as
well as possible alternatives, and presents suggestions for further work.

1

Contents

1 Introduction 4

2 Goals 7

3 Protocol Overview 8
3.1 Bloom Filters . 8
3.2 Attenuated Bloom Filters . 9
3.3 Message Distribution . 9

3.3.1 Announcement Distribution 10
3.3.2 Query Distribution . 11
3.3.3 Response Distribution . 11

3.4 Summary . 12

4 Related Work 13
4.1 ZeroConf . 13
4.2 Scalable Service Discovery for MANET 13
4.3 GSD . 13

5 Protocol Specification 15
5.1 Configuration Parameters . 15
5.2 Computing Announcements . 16

5.2.1 The First Layer . 17
5.2.2 The Other Layers . 18

5.3 Message Formats . 18
5.3.1 Addresses . 19
5.3.2 Announcements . 19
5.3.3 Queries . 20
5.3.4 Responses . 21
5.3.5 Keep-Alive Messages . 22
5.3.6 Update Requests . 22

5.4 Functional Description . 23
5.4.1 State Variables . 23
5.4.2 Startup . 24
5.4.3 Idle State . 24
5.4.4 Ahoy Announcements . 25
5.4.5 Ahoy Queries . 25
5.4.6 Ahoy Responses . 26
5.4.7 Keep-Alive Messages . 26
5.4.8 Update-Request Messages 26
5.4.9 User Announcements . 26
5.4.10 User Revocations . 27
5.4.11 User Queries . 27
5.4.12 The Keep-Alive Timer . 28
5.4.13 The Announcement Timer 28
5.4.14 The Query Cache Cleanup Timer 28
5.4.15 The Service List Cleanup Timer 28
5.4.16 Query Timeouts . 29
5.4.17 Shutdown . 29

2

5.5 Alternatives . 29
5.5.1 Returning Responses Along the Query Path 29
5.5.2 Bloom Filters in Queries 29
5.5.3 Three Message Protocol 29
5.5.4 Alternative Service Specifications 30
5.5.5 Generalized MANET Packet/Message Format 30
5.5.6 Returned Information . 30
5.5.7 Unicast/Broadcast Query Propagation 31
5.5.8 Find-Any vs. Find-All . 31

6 Requirements 32
6.1 Required Features . 32
6.2 Platform . 32
6.3 Alternatives . 33

6.3.1 Lower-Layer Messaging 33
6.3.2 Non-Unix Platforms . 34

7 Implementation Report 35

8 Testing Report 37
8.1 Five Nodes, Full Connectivity . 38
8.2 Five Nodes, Grid Structure . 39
8.3 Five Nodes, Dynamic Structure 41
8.4 Thirteen Nodes, Full Connectivity 42
8.5 Thirteen Nodes, Grid Structure 43
8.6 Thirteen Nodes, Dynamic Structure 44
8.7 Summary . 45

9 Integration with JXTA 46

10 Conclusions 48

11 Suggestions for Future Work 49

Appendix A Obtaining and Installing Ahoy 51

List of Figures 52

List of Tables 52

List of Abbreviations 53

References 54

3

1 Introduction

Ahoy is a service discovery protocol: it allows computers to discover and locate
services that are being offered on the network. Nodes implementing the protocol
send queries containing service identifiers, and receive zero or more responses,
each response containing an address at which an instance of the requested service
can be found. For example, a node wishing to send out an email message might
send a query for the service smtp (SMTP is the mail transport protocol), and
receive two responses: one for the IPv6 [1] address fec0::1 on port 25, and one
for the IPv6 address fec0::53 on port 25. The node can then choose either of
these addresses to start an SMTP session with and transmit its email message.
If the chosen address does not work, the other address can be tried.

Sending an email message requires only one working SMTP service to be
found. Other scenarios may require multiple service instances. For example, a
node wishing to list all files being offered for download over FTP (the Internet
file transfer protocol) could send out a query for the service ftp, connect to all
addresses it receives responses for, and start an FTP session with each address
to obtain the list of files being offered.

Ahoy differs from many other service discovery protocols in that it was de-
signed specifically for mobile ad-hoc networks (MANETs). Traditional (non-
MANET), computer networks consist of a number of stationary computers,
connected by network cables. All computers on the same network can com-
municate with one another directly (at least, as far as the Internet protocol
is concerned). Routing packets to and from other networks is done by one or
more designated routers. The other computers on the network are leaf nodes:
they send and receive packets, but they do not forward them to other nodes.
Figure 1 depicts an infrastructure network.

Figure 1: A traditional infrastructure network.

Mobile ad-hoc networks are a radical departure from the traditional model.
Instead of having one or a few routers and many leaf nodes, and relying on
their static structure and configuration to deliver network packets, prototypical
MANETs consist of battery-powered mobile nodes communicating using radio.
There is no static structure or configuration at all; nodes automatically configure
themselves by cooperating with neighboring nodes, and the configuration will
have to be changed in response to changes in the availability and reachability of
neighboring nodes. Rather than being able to reach other nodes on the network

4

directly, nodes in a MANET will often have to communicate through other
nodes, meaning that intermediate nodes must be willing to forward packets.
Figure 2 depicts a MANET.

Figure 2: A mobile ad-hoc network (MANET).

MANETs pose a number of challenges for service discovery. First of all, not
all nodes may be able to reach one another directly, so provisions must be made
to allow for the discovery of services located multiple hops away. Secondly,
it is highly desirable to minimize the generated network traffic, because nodes
will often operate on limited battery power and on a shared medium with lim-
ited capacity. Thirdly, nodes may have limited memory and processing power
available. This imposes limitations on the amount of information nodes can be
required to maintain, and the amount of processing they may be required to
perform. Fourthly, the mobility of nodes causes reachability and availability to
change; a service discovery protocol for MANETs must deal with this effectively.
This report describes the design and implementation of Ahoy, a decentralized
service discovery protocol based on attenuated Bloom filters.

Bloom filters offer a compact encoding of service presence information with
some probability of false positives. When combined with attenuation, this allows
queries for services to be propagated only to those nodes likely to have infor-
mation about these services. By using attenuated Bloom filters, Ahoy requires
neither full service location information nor service queries to be distributed to
all nodes. Each node maintains information about its own services, and the
Bloom filters of nodes up to a configurable distance (measured in hops) away.
This is why Ahoy is called a proximity-based discovery protocol. In Ahoy, all
nodes are equal. There is no reliance on centralized directories, which avoids
the associated problems in the face of mobility. Thanks to the compactness of
Bloom filters, the size of the state to be maintained, and the messages to be
exchanged, is relatively small. All these qualities make Ahoy a suitable service
discovery for use in MANETs.

The organization of the rest of this document is as follows: Section 2 de-
scribes the goals of the project. Section 3 gives a high level overview of the
Ahoy protocol, including an explanation of attenuated Bloom filters. Section 4
presents related work and highlights how Ahoy differs from it. A detailed specifi-
cation of the protocol is given in Section 5. Section 6 discusses the requirements
Ahoy imposes on the network. The implementation of Ahoy, the issues that

5

were encountered, and the way they were addressed are discussed in Section 7.
Section 8 describes the tests that were performed and the results that were ob-
tained. Section 9 describes how Ahoy was integrated with the JXTA peer to
peer framework. Conclusions are presented in Section 10. Section 11 provides
suggestions for further work.

6

2 Goals

In [2], a context-discovery protocol based on attenuated Bloom filters is pro-
posed. Based on mathematical modeling, the protocol is compared to a proto-
col performing full context advertisements and a protocol performing no such
advertisements. The protocol based on Bloom filters is shown to have very low
network overhead in many cases. In [3], the protocol is implemented in the
OPNET network simulator [4]. Simulation results confirm the efficiency of the
protocol for service discovery.

In the present project, the protocol introduced in [2] and [3] is further refined
and a prototype implementation is created. The prototype implementation
serves as a proof of concept and as a base for further experimentation.

Besides delivering a prototype implementation, this project answers the fol-
lowing research questions:

• Can the protocol be implemented in practice?

• What restrictions, if any, does implementability impose on the design of
the protocol?

• What additional design decisions were necessary to turn the original pro-
tocol into a complete, implementable specification?

• What design choices have been made, and how would different choices
affect the performance of the protocol?

• How usable is the protocol in practice?

To determine the feasibility of implementing the protocol, a prototype imple-
mentation has been made. This required choices to be made about the message
formats and operation of the protocol. These choices have been identified and
documented, and the decisions that were taken are explained in this report.

To demonstrate the practical usability of the protocol, a proof of concept
integration with the JXTA peer to peer framework [5] has been performed.
In the combined system, JXTA uses Ahoy to discover the addresses of the
recipients of propagate messages. This demonstrates the successful use of Ahoy
with existing applications.

Besides this report, the project delivers a prototype implementation of the
Ahoy protocol, which can be built, installed and used on Unix-like systems
(such as GNU/Linux). The implementation consists of Ruby source code for
the Ahoy daemon that implements the protocol, a Ruby module for developing
clients that use the daemon to publish, revoke, and discover services, and a
number of clients using the library. Java classes for developing Ahoy clients are
also provided, as well as a patch against JXTA 2.4 that modifies JXTA to use
Ahoy (see Section 9).

7

3 Protocol Overview

This section gives a high-level overview of how the Ahoy protocol works. It
is divided into a number of subsections. Section 3.1 introduces Bloom filters,
which Ahoy uses to encode service availability information. Section 3.2 intro-
duces attenuated Bloom filters, which Ahoy uses to aggregate and distribute
information about services located multiple hops away. Section 3.3 describes
the main message types of Ahoy and illustrates the way services are announced
and discovered.

3.1 Bloom Filters

In Ahoy, service availability information is encoded in Bloom filters [6]. A Bloom
filter is represented by a bit array and a number of hash functions returning
indices in the array. Initially, all bits are set to 0. Bloom filters support two
operations: adding an item, and testing for item presence. To add an item, it
is run through each of the hash functions, and, for each result, the bit at that
position is set to 1. To test if an item is present, it is run through the same
set of hash functions, and the bits at each of the resulting indices are tested. If
one or more of the tested bits are 0, the item is not present. If all tested bits
are 1, the item is probably present, although there is a small chance of a false
positive. In Ahoy, the items added to Bloom filters are strings (encoded using
UTF-8 [7]) representing service names.

Figure 3 depicts an empty Bloom filter. Since the filter is empty, all bits are
set to zero.

Figure 3: An empty Bloom filter.

Suppose we are using two hash functions, and running the service name ftp
through the hash functions yields the values 1 and 5, respectively. Then, to add
ftp to the Bloom filter, we set the corresponding bits to 1. The result is shown
in figure 4.

Figure 4: A Bloom filter containing ftp.

Testing if the filter contains ftp requires us to check whether bits 1 and 5
are set to 1. Since we just set these bits to 1, the test will tell us that ftp is
present in the filter. If http hashes to the values 2 and 6, checking if http is
present will tell us it is not present, because both bits are 0. If smtp hashes to
values 2 and 5, testing whether it is present in the filter will also tell us it is not
present: bit 5 is set, but bit 2 is not. However, if we add http by setting bits 2

8

and 6 to 1 (obtaining the filter depicted in figure 5), both http (bits 2 and 6)
and smtp (bits 2 and 5) seem to be present in the filter, even though we have
never added smtp. This means testing if the filter contains smtp yields a false
positive; the test tells us it is present, although it is not.

Figure 5: A Bloom filter containing ftp and http.

The probability that false positives will occur is a function of the number of
services in a filter, the number of bits in the filter (called its width), and the
number of hash functions used. In these examples, 8-bit Bloom filters have been
used for the sake of simplicity. In practice, larger Bloom filters would be used
to make false positives less likely. Also, the bit indices used in these examples
are not the actual bit indices that Ahoy would generate for the given service
names. The actual algorithm for computing bit indices is given in Section 5.2.

Bloom filters allow service availability to be represented compactly, leading
to limited network traffic and memory requirements inside nodes.

3.2 Attenuated Bloom Filters

Ahoy nodes exchange information about services offered up to a configurable
distance (measured in hops) away from themselves. This information is rep-
resented in attenuated Bloom filters. An attenuated Bloom filter consists of
multiple layers of Bloom filters, where the first layer contains a Bloom filter
representing services available at the sending node, the second layer consists
of services available one hop away from the sending node, and so on, up to
a configured number of hops away (this number of hops is called the depth).
Attenuated Bloom filters allow the discovery of services located multiple hops
away, and provide information about which nodes may have more information
about a service. Figure 6 shows how information from incoming attenuated
Bloom filters is aggregated and represented in an outgoing attenuated Bloom
filter.

The bottom node receives attenuated Bloom filters from the left and right
nodes. It then sends out an attenuated Bloom filter containing a layer corre-
sponding to its own services (top row), one layer that is the bitwise OR of the
first layer received from the left node and the first layer from the right node
(middle row), and one layer containing the bitwise OR of the second layers re-
ceived from the left and right nodes (bottom row). The third layers received
from the left and right nodes are not represented in the attenuated Bloom filter
sent out from the bottom node, because they represent services too many hops
away.

3.3 Message Distribution

Nodes exchange service information by sending announcement messages to their
neighbors. When a node wishes to use a service, it sends a query message

9

Figure 6: Aggregation of service information.

containing the name of the service it seeks information about. Nodes receiving
a query for a service they provide will respond by sending a response message
containing the service’s address to the node the query originated from. This
section illustrates the distribution of announcements, queries, and responses.

3.3.1 Announcement Distribution

Since attenuated Bloom filters only encode information about services up to a
maximum number of hops away, not all services can necessarily be discovered
by all nodes in the network. Figure 7 shows the distribution of a particular
service in a network with a regular grid structure.

Figure 7: Distribution of service information in a network with a regular grid
structure.

In this example, the depth is 2. The node in the center sends out an
announcement containing information about a service it offers. This information
is received by the sending node’s neighbors, who include it in announcements
they subsequently send out. The information is then received by the neighbors
of these nodes, but not sent on further, because the maximum depth has been
reached. As a result, all colored nodes will be able to discover the service,
whereas the white nodes will not.

10

3.3.2 Query Distribution

Bloom filters encode only availability information. Also, they do not encode that
information precisely, but with a small probability of false positives. To discover
services with certainty and to discover the address at which these services can
be contacted, nodes send query messages. This is the only time queries are
sent; in particular, queries are not sent periodically. Besides the name of the
requested service, queries carry a query id (used to avoid loops) a time-to-live
(limiting the distribution of the query to depth hops), and the address of the
node the query originated from. Queries are only sent to nodes whose Bloom
filters contain the requested service, because other nodes certainly would not
be able to provide useful responses. The distribution of queries is illustrated in
figure 8.

Figure 8: Distribution of a query.

Again, the depth is 2. The query is only distributed to nodes that have sent
Bloom filters containing the right bits for the requested service. These nodes
are colored (bright) orange in this image. Also, query propagation is limited to
those nodes who have information about the service within the time-to-live of
the query. Thus, in effect, the a node forwards the query only to those nodes
that are closer to the query than itself. All nodes receiving the query are colored
(medium) purple in figure 8.

3.3.3 Response Distribution

Finally, when a node receives a query for a service that it provides, it sends a
response containing the IP address and port number of the requested service.
Responses are addressed directly to the node the query originated from. The
routing layer of the network is used to deliver responses to nodes located multiple
hops away. Figure 9 illustrates the distribution of responses.

Figure 9: Distribution of a response.

As before, nodes that received the announcement for the service are colored

11

(bright) orange, and nodes that received the query for the service are colored
(medium) purple. The center node offers the service requested in the query. It
sends a response to the node the query originated from. Although the response
message has to pass through other nodes (colored black) to reach its destination,
these nodes do not do any processing on the message besides forwarding it
towards its destination. In particular, the message is not processed by Ahoy on
these intermediate nodes.

3.4 Summary

It should be clear that Bloom filters play a crucial role in Ahoy. Where fully
pro-active service discovery protocols broadcast full service information, Ahoy
broadcasts only Bloom filters, which are often smaller. Where fully reactive pro-
tocols require queries to be distributed to all nodes, Ahoy’s attenuated Bloom
filters allow queries to be guided to the nodes that have the requested infor-
mation, or even completely eliminate queries for non-existent services. Thus,
it can be expected that Ahoy compares favorably (in terms of network traffic
generation) to both pro-active and reactive protocols. This is also demonstrated
in [2].

The use of Bloom filters also represents a trade-off. When a false positive
occurs, a query will be sent for a service that does not exist. This wastes network
traffic. One way to reduce the probability that false positives will occur is to
use larger Bloom filters. However, this increases the size of announcements,
and thus, network traffic. Clearly, there is a certain optimum at which network
traffic is minimized. However, this optimum depends on a large number of
factors (number of services, Bloom filter width, attenuation depth, number of
hash functions, announcement rate, query rate), and is difficult if not impossible
to determine precisely in mobile ad-hoc networks.

12

4 Related Work

Although Ahoy is not based on any other protocol, it shares certain features with
other protocols. This section discusses some of these protocols, by mentioning
their most important characteristics and how they differ from Ahoy.

4.1 ZeroConf

ZeroConf [8] defines a suite of simple protocols for zero configuration networking.
One of these protocols is DNS-SD [9], which allows service discovery, and is
implemented as part of Apple’s Bonjour[10] framework (used extensively by
various applications for Mac OS X), as well as supported by the KDE[11] and
GNOME[12] desktop environments. The zero configuration service discovery
mechanism is built on top of multicast DNS[13]. This is a decentralized and
lightweight solution. It also offers a number of functions that Ahoy does not
provide, such as enumerating all services in the network. However, queries must
reach all nodes on the network, which does not scale well to larger networks.

4.2 Scalable Service Discovery for MANET

In Scalable Service Discovery for MANET [14], a service discovery protocol
based on Bloom filters and directory agents is proposed. Service presence in-
formation only has to be exchanged among directory nodes, and queries only
have to be made from the client node to the nearest directory node, making this
protocol particularly efficient in terms of network traffic. Furthermore, Bloom
filters are used for the exchange of service availability information among direc-
tory agents. Directories are automatically set up using an election algorithm.

This protocol differs from Ahoy in a number of important aspects. Most
importantly, Scalable Service Discovery allows services in the whole network to
be discovered, whereas Ahoy limits service discovery to a preconfigured number
of hops. Secondly, where Ahoy services are described by simple strings, Scalable
Service Discovery describes services using DAML [15] and allows queries to refer
to attributes and values. Thus, Scalable Service Discovery is more powerful than
Ahoy, but also much more complex. Also, Scalable Service Discovery relies on
directories, which could be problematic in MANETs where connectivity changes
frequently. By contrast, Ahoy is fully decentralized.

4.3 GSD

GSD [16] is a service discovery protocol designed specifically for MANETs. It
is based on “peer-to-peer caching of service advertisements and group-based in-
telligent forwarding of service requests”. Like Scalable Service Discovery, GSD
uses DAML to describe services, thus allowing rich queries to me made. Fur-
thermore, it uses the class/subClass hierarchy described by DAML to selectively
forward queries (i.e. queries are not flooded to all nodes). In this sense, DAML
descriptions are used in a similar fashion to how Bloom filters are used in Ahoy
and Scalable Service Discovery.

Although GSD does not use Bloom filters, it does share a number of traits
with Ahoy. Like Ahoy, GSD limits service advertisements to a preconfigured
number of hops. Also, in GSD as well as in Ahoy, all nodes are equal, and all

13

cache information from service announcements they receive. Finally, both GSD
and Ahoy resolve service names by means of query messages which are limited
to a certain number of hops and are selectively forwarded to neighbors likely to
have information about the requested service.

Unlike Ahoy nodes, which announce all services they know of in a single
attenuated Bloom filter, GSD nodes advertise each service separately, with a
large amount of information contained in the advertisements. It can thus be
expected that announcing services is much more expensive in GSD than it is in
Ahoy.

14

5 Protocol Specification

A high-level overview of the Ahoy protocol has been given in Section 3. This
section presents a detailed description of the protocol. Section 5.1 describes the
various parameters governing the operation of Ahoy. Section 5.2 details how
announcements are computed, an operation which is referred to various times
in the rest of the protocol specification. Section 5.3 discusses the messages used
by Ahoy. Section 5.4 describes the protocol in terms of events and responses.

5.1 Configuration Parameters

On startup, the daemon reads a configuration file to determine various param-
eters. Currently, the following configuration options are recognized:

announcement-min-time The minimum time that should elapse between
subsequent announcements (used to prevent announcement storms, where
many announcements are sent out in rapid succession). The value is in
seconds, and defaults to 5.

broadcast-queries This parameter controls whether query messages are prop-
agated using a one-hop broadcast, or by unicasting them to each of the
neighbors they are intended for. It defaults to false, which causes unicast
propagation to be used. Any other value causes broadcast propagation to
be used.

depth The depth of the attenuated Bloom filters; that is, how many hops will
be represented in each announcement. This value should be the same for
all nodes on the network. If not specified, it defaults to 4.

hash-functions The number of hash functions to use with the Bloom filters.
Hashes are computed as follows:

hash ← n
for each byte b in service name:

hash ← 33 ∗ (hash xor b))
return (hash mod width)

where n is the number of the hash function (starting at 0), width is the
value of the configuration parameter width. To simplify computation on
32-bit systems, all arithmetic is performed modulo 232.

The default number of hash functions is 3.

ip-address The IPv6 address to which the daemon will bind. This address is
also used as the source address for queries. It is a required parameter;
without it, the daemon will not operate correctly.

local-address The local address on which the daemon is to listen for user
connections. If not specified, it defaults to /tmp/ahoy/socket.

port The port number on which to listen. This parameter must be the same
for all nodes on the network, or the protocol will not work. The default
value is 5000.

15

keep-alive-time How much time should elapse between subsequent keep-alive
messages. The value is in seconds, and causes a keep-alive message to
be sent that many seconds after the latest announcement or keep-alive
message, with some random variation as specified by keep-alive-jitter.
The default value is 15.

keep-alive-jitter The value of keep-alive-time is not followed strictly; rather,
each keep-alive message is randomly scheduled within a certain margin
around the designated time. This is done to prevent the situation where
two or more nodes have coinciding schedules for keep-alive messages, with
each node sending each keep-alive at exactly the same time as the other
node, causing them to collide. The value of keep-alive-jitter is a per-
centage. The delay for the next keep-alive message is computed as keep-
alive-time + (keep-alive-time ∗ (rand − 0.5) ∗ keep alive jitter /
100), where rand is a random value between 0 and 1. The default value
of keep-alive-jitter is 25, meaning that the jitter is 25% of the value of
keep-alive-time.

local-service-timeout Users are required to re-announce their services peri-
odically. This is done so that these services can be removed in the event a
user program crashes or otherwise fails to revoke service announcements
for services no longer offered. local-service-timeout specifies after how
many seconds local services should be discarded. It defaults to 300.

query-timeout The number of seconds each query will remain active. Re-
sponses to queries will not be processed after query-timeout seconds.
The default value of this parameter is 10.

query-cache-timeout The interval (in seconds) between subsequent clean-ups
of the query cache. Every query-cache-timeout seconds, entries in the
query cache that are older that query-cache-timeout seconds will be
removed, meaning their query ids can be reused.

width The width of the Bloom filters; that is, the number of bits in the bit
array for each Bloom filter. This parameter must be the same for all nodes
on the network, or the protocol will not work. If not specified, it defaults
to 128.

5.2 Computing Announcements

One of the most complex tasks in Ahoy is the computation of announcement
messages. An announcement message consists of an attenuated Bloom filter
containing depth layers. The first layer represents services advertised by the
node sending the announcement. The second layer represents services advertised
by the neighbors of that node. The third layer represents services advertised by
the neighbors of these neighbors, and so on.

To compute an announcement, a node needs three things: the names of the
services it advertises, the announcements received from neighboring nodes, and
the parameters for the computation of the announcement (width, depth, and
the number of hash-functions).

16

5.2.1 The First Layer

The first layer of the announcement represents services advertised by the node
computing the announcement. The node creates an empty Bloom filter, con-
sisting of width bits (initially set to 0) and hash-functions hash functions.
The hash functions are specified by the following algorithm:

hash ← n
for each byte b in service name:

hash ← 33 ∗ (hash xor b))
return (hash mod width)

where n is 0 for the first hash function, 1 for the second hash function and so
on.

After the empty Bloom filter has been created, the node adds all services it
advertises to the filter, as follows. For each of the hash functions associated with
the Bloom filter, the node calls that function, passing the string representing
the service (i.e. the service name) as an argument. This yields an index in
the bit array of the Bloom filter (i.e. a value from 0 up to, but not including,
width). The bit at that index is set to 1. This is done for all hash functions
and all service names.

For example, suppose width is 8, hash-functions is 2, and the services to
be advertised are ftp and http. First, an empty Bloom filter containing 8 bits
is created. This filter is displayed in figure 10.

Figure 10: An empty Bloom filter of width 8.

Then, ftp is added to the filter. Represented as a string in UTF-8 (the char-
acter encoding used by Ahoy), this is byte sequence {102, 116, 112}. Running
this through the first hash function (n = 0), we get 2. So we set bit 2 (the
third bit) of the Bloom filter to 1. Running the same byte sequence through the
second hash function (n = 1), we get 3. So we set bit 3 (the fourth bit) of the
Bloom filter to 1, as well. The Bloom filter, after adding ftp to it, is shown in
figure 11.

Figure 11: A Bloom filter of width 8, containing the service ftp.

After ftp has been added, we add http to the filter. The procedure is the
same, except that the byte sequence for the string http is {104, 116, 116, 112}.
This yields the value 0 when run through the first hash function, and the value
1 when run through the second hash function. Thus, we set bits 0 and 1 of the
Bloom filter to 1, yielding the filter shown in figure 12.

17

Figure 12: A Bloom filter of width 8, containing the services ftp and http.

5.2.2 The Other Layers

The other layers of the announcement are computed from the announcements
received from neighboring nodes. The second layer of the announcement being
computed is created by taking the bitwise OR of the first layers of all announce-
ments received from neighbors. The third layer of the new announcement is
computed from the second layers of all received announcements, and so on.
The last layers of the received announcements are not used in the computation,
because they will not be represented in the new announcement being computed.

The combining of attenuated Bloom filters received from other nodes into a
new attenuated Bloom filter is graphically depicted in figure 13. The attenuated
Bloom filter sent by the bottom node consists of three layers, where the first
layer is computed from the names of services the bottom node itself advertises,
the second layer is the bitwise OR of the first layers received from the top nodes,
and the third layer is the bitwise OR of the second layers received from the top
nodes. The third layers received from the top nodes are saved by the bottom
node, but not included in the attenuated Bloom filter it sends out.

Figure 13: Aggregation of service information.

A complete description of all the fields of an announcement message is given
in Section 5.3.2.

5.3 Message Formats

Message formats are specified using a table listing the fields the message con-
tains, the offset of each field within the message, the size of the field, and a

18

concise description of the content of the field. Offsets and sizes are in octets.
Numeric fields are unsigned integers in network byte order (big-endian), and tex-
tual fields are in UTF-8. Each table is followed by a more detailed description
of each of the fields.

Several messages (announcements, keep-alive messages, queries and responses)
contain id fields. Each of these id fields is 4 octets wide. The id field in keep-alive
messages must match that of the latest announcement sent out by a node, and
the id field in a response must match that of the query the response belongs to.
Id fields for announcements and queries can be generated by any algorithm, as
long as care is taken that subsequent announcements from the same node have
different ids, and concurrently active queries from the same node have different
ids. Queries or announcements coming from different nodes do not have to have
distinct ids, as they can be distinguished by sender address.

5.3.1 Addresses

Some messages (queries and responses) include addresses. In principle, any type
of address could be supported, but the only address type currently defined is the
IPv6 address. Because services that use IPv6 typically also need a port number,
a field for the port number is included in the structure. The representation of
an IPv6 address is shown in table 1.

Offset Size Description
0 1 size
1 1 type
2 2 port
4 16 address

Table 1: Wire format of an IPv6 address.

size The size of the address in bytes, including the size and type fields. For
IPv6 addresses, this is always 20.

type The address type. For IPv6 addresses, the type is 1.

port The port number as a 16-bit unsigned integer in network byte order.

address The 128 bits of the IPv6 address proper.

5.3.2 Announcements

The format of announcement messages is shown in table 2.

type The type for announcements is 1.

generation-id A 32-bit unsigned integer which is updated each time a new
announcement is sent out. This is used to detect missed announcements
(see Section 5.3.5).

depth The number of layers of Bloom filters in this announcement.

19

Offset Size Description
0 1 type
1 4 generation-id
5 1 depth
6 2 width
8 variable filters

Table 2: Wire format of an announcement message.

width The width of the Bloom filters, in bits.

filters The bits of the filters. Filter width should be a multiple of 8 bits (one
octet) for maximum efficiency. However, if filter width is not a multiple of
8 bits, the remaining bits should be set to 0. Filters are sent in order from
least to greatest depth (distance from the node sending the announce-
ment). The ordering of the bits in each filter is from the least significant
bit in the first octet to the most significant bit in the last octet; i.e. bit 0
of the filter is the bit with weight 1 in the first byte, bit 7 of the filter is
the bit with weight 128 in the first byte, bit 8 of the filter is the bit with
weight 1 in the second byte, etc.

An announcement contains multiple layers of Bloom filters, each layer corre-
sponding to a certain hop count from the node sending the announcement. The
depth field indicates the number of layers in the announcement, and should be
the same for all announcements sent by all nodes. Nodes can discover services
up to depth hops away from themselves. The width field indicates the number
of bits in the Bloom filters, and must be the same for all nodes; if it is not,
service discovery will not work.

Announcements are broadcast to all neighbors whenever the contents of
the Bloom filters maintained by a node change. This can be in response to a
service being announced or revoked on the node itself, but also in response to an
announcement just received from a neighbor, or the expiry of information from a
node that has not been heard from for a while. To prevent flooding the network
with announcements, there is a minimum delay between announcements.

Announcements are also sent in response to update requests (see Section 5.3.6).
In this case, the announcement is not broadcast to all neighbors, but sent only
to the node requesting the update. There is no rate limiting for this sending of
announcements.

The way announcements are computed is explained in Section 5.2.

5.3.3 Queries

The format of query messages is shown in table 3.

type The type for queries is 2.

query-id The query-id for this query as a 32-bit unsigned integer identifying
the query.

20

Offset Size Description
0 1 type
1 4 query-id
5 1 time-to-live
6 2 name-length
8 variable name
variable variable sender-address

Table 3: Wire format of a query message.

time-to-live The maximum number of hops this query may still be propagated.
It is decremented each time the query is propagated by a node. Queries
should only be sent and received if the time-to-live is at least 1.

name-length The number of bytes in the service name.

name The name of the service being queried for.

sender-address The address of the originator of this query.

A query is sent whenever a node wishes to locate service instances. The query is
propagated to all neighbors that may be able to provide information about the
service. This is determined by testing the Bloom filters received from neighbors
for the presence of the service name. This process is repeated by neighbors
receiving the query, as long as the time-to-live permits service propagation.
Thus, the query is propagated to all nodes within the number of hops specified
by the originator that have information about the requested service.

Each node receiving the query checks if it has the service being queried for.
If so, it sends a response (see Section 5.3.4) to the originator of the query. The
query is propagated (time-to-live permitting) no matter if a match is found in
the current node or not. Thus, a query returns all reachable service addresses,
not just the nearest ones.

5.3.4 Responses

The format of response messages is shown in table 4.

Offset Size Description
0 1 type
1 4 query-id
5 variable address

Table 4: Wire format of a response message.

type The type for response messages is 3.

query-id The query-id of the query this response relates to.

address The address of the service.

21

A node will send a response when it receives a query for a service it provides.
The response will contain the query-id of the query and the address of the
service, and it will be sent directly to the address specified in the query message
(see Section 5.3.3).

5.3.5 Keep-Alive Messages

The format of keep-alive messages is shown in table 5.

Offset Size Description
0 1 type
1 4 generation-id

Table 5: Wire format of a keep-alive message.

type The type for keep-alive messages is 4.

generation-id The generation-id of the latest announcement sent out by this
node.

Keep-alive messages are periodically sent to all neighbors. Their purpose is
twofold. First of all, keep-alive messages notify neighbors that the sending node
is still present and still participating in Ahoy. This allows nodes to discard
information from neighbors that have not been heard from for a while. Sec-
ondly, keep-alive message inform neighbors of the generation-id of the latest
announcement sent out by the node sending the keep-alive. If a node missed
an announcement (or was not in range when the announcement was sent), it
will know its information is out of date, and it will send an update request (see
Section 5.3.6).

Two parameters are important to keep-alive messages: the delay between
the sending of consecutive keep-alives, and the time to wait before discarding
information from nodes from which no keep-alive message has been received.
The keep-alive delay is reset when a keep-alive message or an announcement is
sent, and the timeout for a neighbor is reset whenever a keep-alive message or
an announcement is received from that neighbor.

To prevent keep-alive messages from colliding, each keep-alive message is
scheduled a random amount of time (between configurable bounds) earlier or
later than the strict value of the keep-alive delay.

All nodes should have their timeouts set sufficiently large that information
from nodes is not discarded needlessly often.

5.3.6 Update Requests

The format of update requests is displayed in table 6.

type The type for update requests is 5.

A node will send an update request when it receives a keep-alive message from
a neighbor, but the generation-id in the update request does not match that
of the latest announcement received from that neighbor (or no announcement

22

Offset Size Description
0 1 type

Table 6: Wire format of an update request message.

from that neighbor is recorded at the time the keep-alive message is received).
The update request is sent directly to the sender of the keep-alive message. In
response, the neighbor is expected to send its latest announcement directly to
the node sending the update request (using unicast).

When a node first comes online, it will broadcast an update request to all
neighbors, prompting them to send their current announcements to the joining
node. If any services are being offered, the joining node will then send out an
announcement itself, indicating its ability to relay queries.

5.4 Functional Description

This subsection describes Ahoy in terms of events and responses. There are four
types of event:

1. Messages from other Ahoy nodes: announcements, queries, responses,
keep-alives, and update requests

2. User actions: announcements, revocations and queries.

3. Timeouts: minimum announcement delay, keep-alive delay, query timeout,
query cache cleanup timer, and service list cleanup timer.

4. Exceptions: the user sending a break to the program, the operating system
sending a terminate signal, out of memory. etc.

Before these events are discussed, an overview of the state variables Ahoy main-
tains and an overview of the configuration parameters that govern Ahoy’s op-
eration are given.

5.4.1 State Variables

The Ahoy daemon maintains five state variables:

Query Cache The query cache is used for detecting (and subsequently dis-
carding) duplicate queries. For each query that is received, it contains the
query id (see 5.3.3), the source address of the query, and a timestamp.
The query cache is cleaned up at regular intervals by purging old entries.

Neighbor List The neighbor list contains information about the direct neigh-
bors of the node running the Ahoy daemon. For every neighbor, it con-
tains the neighbor’s address, a timestamp, and the latest announcement
(generation id and Bloom filters) received from that neighbor.

Local Services The local services list contains the services announced by users.
For each service, it contains the name, the address, and a timestamp. The
local services list is cleaned regularly by removing old entries.

23

Latest Announcement The Ahoy daemon keeps the information in the latest
announcement it sent out. When the neighbor list or the local services
change, a new set of Bloom filters is computed, but these only need to be
broadcast if they are different from the filters in the latest announcement.
Keeping a copy of the information sent out in the latest announcement
allows the daemon to decide whether it needs to send out a new announce-
ment or not.

Active Queries The daemon keeps a list of active queries, i.e. queries that
have been initiated by users and that the daemon is currently awaiting
responses for. For each such query, the list contains the query id and the
socket on which the user program is listening for responses.

5.4.2 Startup

After the configuration parameters have been set, Ahoy opens a UDP socket
on the configured ip-address and port. This socket is used for sending and
receiving Ahoy messages. After the socket has been opened, Ahoy broadcasts an
update request message, after which it enters the idle state (see Section 5.4.3).
The update request causes neighboring Ahoy instances to send their latest an-
nouncements to the new instance, allowing it to populate its neighbor list.

5.4.3 Idle State

In the idle state, the daemon waits for events to occur. The events are listed
below, along with the number of the section that discusses the handling of the
event.

• An announcement is received from another Ahoy node (Section 5.4.4).

• A query is received from another Ahoy node (Section 5.4.5).

• A response is received from another Ahoy node (Section 5.4.6).

• A keep-alive message is received from another Ahoy node (Section 5.4.7).

• An update-request message is received from another Ahoy node (Sec-
tion 5.4.8).

• An announcement is received from a user (Section 5.4.9).

• A revocation is received from a user (Section 5.4.10).

• A query is received from a user (Section 5.4.11).

• The keep-alive timer expires (Section 5.4.12).

• The announcement timer expires (Section 5.4.13).

• The query cache cleanup timer expires (Section 5.4.14).

• The service list cleanup timer expires (Section 5.4.15).

• A query timer expires (Section 5.4.16).

24

• A signal is received from the operating system, causing the daemon to
clean up and exit (Section 5.4.17).

These events are handled as described below. If a message is received that does
not fit one of the above categories, a warning is emitted and the message is
discarded.

5.4.4 Ahoy Announcements

When an announcement is received from another Ahoy node on the network,
the following steps are taken:

• The current time, the content of the announcement, and the address of
the neighbor from which it was received are recorded in the Neighbor List,
overwriting any previous entry for the same address.

• A new announcement is computed based on the new information (see
Section 5.2 for a description of how announcements are computed).

• If the new announcement differs from the Latest Announcement, it is
broadcast to all neighbors and becomes the new Latest Announcement.

5.4.5 Ahoy Queries

When a query is received from the network, the following actions are performed:

• The query’s id and source address are looked up in the Query Cache.
If a match is found (meaning the query has been seen before), only the
timestamp in the cache is updated and no further processing is performed
(the query is discarded).

• The current time, the query’s id, and the query’s source address are in-
serted into the Query Cache.

• The query’s service name is looked up in the Local Services. For any
matching services, a response message (see Section 5.3.4) is sent to the
query’s source address.

• If the query’s time-to-live is greater than 1, it is propagated. Propagation
works as follows:

– A new query message is created, with its id, service name, and source
address equal to those of the received query, and a time-to-live of one
lower than the received value.

– The Neighbor List is cleaned up by removing neighbors from which
no announcement or keep-alive message has been received in the last
neighbor-timeout seconds. If any neighbors were removed, a new
announcement is computed based on the remaining service informa-
tion. If this announcement differs from the Latest Announcement,
it is broadcast to neighboring nodes, becomes the new Latest An-
nouncement, and the keep-alive timer is reset.

25

– After the Neighbor List has been cleaned, a look up is performed
against it, returning all neighbors who have matches for the service
name in their Bloom filters, within a number of hops less than or
equal to the time-to-live of the new query.

– The new query is sent to all these neighbors, if any. If broadcast-
queries is false, the query is unicast to each individual address. Oth-
erwise, a single broadcast message is sent if there are any knowledge-
able neighbors. No query message is sent if the look up in the previous
item did not return any matches.

5.4.6 Ahoy Responses

When a response is received from the network, it is processed as follows:

• The id is looked up in the Active Queries. If no match is found, no further
processing is done.

• If a match is found, the address contained in the response is sent to the
user program waiting for it.

5.4.7 Keep-Alive Messages

When an Ahoy node receives a keep-alive message from another Ahoy node, it
takes the following actions:

• The generation-id is extracted from the keep-alive message.

• The node the message was received from is looked up in the Neighbor List.

• If the neighbor is found in the list, and the generation id recorded in the
entry in the Neighbor List matches that of the message, the timestamp
for the entry is updated.

• If the neighbor is not found in the list, or if the recorded generation id
does not match the one contained in the message, an update request is
sent to the neighbor.

5.4.8 Update-Request Messages

Upon receipt of an update-request message, an Ahoy node sends its latest an-
nouncement to the node that the update request was received from.

5.4.9 User Announcements

Users can announce services on Ahoy by specifying the service name, IP address,
and port number. User announcements are handled by taking the following
steps:

• Enter the current time, the service name, and the service address in the
Local Services. If an entry with the same service name and address already
exists, it is overwritten (put differently, the timestamp is updated).

26

• Recompute the Bloom filters to be announced, based on the new informa-
tion.

• If the new Bloom filters differ from those sent in the Latest Announcement,
a new announcement with the updated filters is sent out (this becomes
the new Latest Announcement), and reset the keep-alive timer.

Note that, since local services are automatically removed after local-service-
timeout seconds, users have to re-announce their services periodically if they
wish them to persist.

5.4.10 User Revocations

Users can revoke service announcements by specifying the service name, IP
address, and port number of the announcement to be revoked. This causes
Ahoy to perform the following steps:

• Look up the service name and address in the Local Services.

• If no entry is found, no further processing is done.

• If an entry is found, it is removed.

• If this removes the last entry for the given service name, meaning the
service is no longer offered at all, a new announcement is computed. If
the new announcement differs from the Latest Announcement, it becomes
the new Latest Announcement, it is distributed to all neighbors, and the
keep-alive timer is reset.

5.4.11 User Queries

Users may discover service instances by performing queries on the service name.
Queries are performed as follows:

• Generate an id for the query.

• Enter the query id into the Active Queries, along with information about
the user program that responses are to be sent to.

• Generate a query message containing the id, the service name, the dae-
mon’s IP address, and a time-to-live field with a value equal to depth.

• Search the Neighbor List for neighbors that have matches for the service
name in their latest announcements.

• Send the query to any such neighbors, using unicast if broadcast-queries
is false, using broadcast otherwise.

• Set a timeout of query-timeout seconds. When the timeout expires, the
query information is removed from Active Queries.

27

5.4.12 The Keep-Alive Timer

The keep-alive timer is set after an announcement or a keep-alive message is
sent, to schedule the sending of another keep-alive message. When the timer
expires, a keep-alive message is broadcast to all neighbors. The keep-alive timer
is then reset to keep-alive-time ± (keep-alive-time ∗ keep-alive-jitter /
200) (in other words: a value of keep-alive-jitter% around the value of keep-
alive-time) to schedule the next keep-alive message.

As an example, if keep-alive-time is 15 and keep-alive-jitter is 25 (the
default values), the keep alive timer will be set to a value between 13.125 and
16.875. The actual value is chosen at random each time the timer is set, i.e. it
will be different for every subsequent keep-alive message.

Finally, when the keep-alive timer expires, the Neighbor List is also cleaned
up by removing neighbors from which no announcements or keep-alive mes-
sages have been received in the last neighbor-timeout seconds. If any neigh-
bors were removed, a new announcement is computed based on information
available from the remaining neighbors and Local Services. If the computed an-
nouncement differs from the Latest Announcement, it becomes the new Latest
Announcement, is broadcast to neighboring nodes, and the keep-alive timer is
reset.

5.4.13 The Announcement Timer

The announcement timer is set whenever a new announcement (different from
the Latest Announcement) has been computed, but an announcement was sent
less than announcement-min-time seconds ago. The new announcement can-
not be sent immediately, and thus is scheduled to be sent at a later time.

When the announcement timer expires, an announcement computed from
the latest available information (including changes that occurred after the timer
was set) is sent. The new announcement then becomes the new Latest An-
nouncement. Also, as always when an announcement is sent, the keep-alive
timer is reset (see Section 5.4.12).

5.4.14 The Query Cache Cleanup Timer

The query cache cleanup timer is used to periodically clean up the Query Cache.
It is first set when Ahoy is started, and reset each time it expires, causing the
Query Cache to be cleaned up every query-cache-timeout seconds. Cleaning
up is done by discarding from the cache any entries that are older than query-
cache-timeout seconds.

5.4.15 The Service List Cleanup Timer

The service list cleanup timer is used to clean up the Local Services list. It is set
to local-service-timeout / 10 seconds when Ahoy starts, as well as each time it
expires. When it expires, the list of Local Services is scanned for entries that are
older than local-service-timeout seconds, and any such entries are removed.
If this results in any services no longer being offered, a new announcement is
computed. If the announcement differs from the Latest Announcement, it is
broadcast to neighbors, and the keep-alive timer is reset.

28

5.4.16 Query Timeouts

Whenever a query is initiated by a user, a timeout of query-timeout seconds
is set. When the timeout expires, the query is closed. Any responses that come
in after such time will be ignored.

5.4.17 Shutdown

When the Ahoy daemon exits, it deletes the AF LOCAL socket it created for
communicating with user programs.

5.5 Alternatives

5.5.1 Returning Responses Along the Query Path

Ahoy uses (and thus requires) routing to return response messages to querying
nodes. An alternative approach would be to send the response back along the
path taken by the query; that is, the responding node sends the response to the
neighbor it received the query from; that neighbor then sends the response to
the neighbor it received the query from, and so on, until the response reaches
the query originator.

Sending responses back along the query path has the advantage that no
routing functionality has to be present in the platform. On the other hand,
it essentially means that this functionality is being duplicated in Ahoy. Since
routing would probably be required for using the discovered addresses anyway,
it was decided to simply assume the availability of routing and use it to deliver
response messages.

5.5.2 Bloom Filters in Queries

The existing protocol sends service names in queries. Nodes receiving queries
check the service name against the names of the services they offer, and send
a response containing the query id and the address of the service if a match is
found.

An alternative would be to send Bloom filters in queries. Nodes receiving
queries would then send responses using the names and addresses of any services
that match the received Bloom filter. This approach was initially taken in [2] and
[3]. However, this approach was not taken for Ahoy, because it leads to larger
response messages. It may also lead to larger queries (if the size of the included
Bloom filter exceeds the size of the service name) and more response messages
(if the included Bloom filter matches that of a service other than the service
being queried for, although this is extremely unlikely). An advantage of sending
Bloom filters in queries, instead of names, is that the filter corresponding to the
name is computed only once, at the originating node, rather than at every node
that receives the query.

5.5.3 Three Message Protocol

The original design for Ahoy featured only three message types: announcements,
queries, and responses. Announcements would be periodically re-broadcast to
allow for the detection of changes in the network topology. Nodes becoming

29

reachable would be detected by the reception of an announcement from an ad-
dress no announcement had been recorded for. Nodes becoming unreachable
would be detected by not receiving an announcement from them within a spec-
ified time interval.

Having only three messages in the protocol simplifies its specification. It also
simplifies the implementation somewhat. However, periodically re-broadcasting
announcements generates quite a lot of unnecessary network traffic. Using keep-
alive and update-request messages to discover topology changes and handle
lost announcements allows for quicker detection of changes and/or conservation
of resources (a keep-alive message is 5 bytes, whereas announcements can be
hundreds or even thousands of bytes).

5.5.4 Alternative Service Specifications

Ahoy identifies services by arbitrary strings. Certain other service discovery
protocols (e.g. Scalable Service Discovery for MANETs [14]) allow services
to be specified using key-value pairs. Technically, any type of data can be
encoded into Bloom filters, so Ahoy could be made to support other types of
service specifications without changing the fundamental nature of the protocol.
However, for this project, the focus was on the use of Bloom filters, not on the
nature of service specifications. Using alternative service specifications could be
an interesting topic for further research.

5.5.5 Generalized MANET Packet/Message Format

A proposal exists within the IETF for a generalized MANET message/packet
format [17]. This proposal describes a message format that, when implemented
by nodes, can be used to encode messages in a service-independent way, so that
nodes not participating in a service could still meaningfully process messages.
For example, service discovery messages encoded in such a format could be
forwarded by nodes not participating in the service discovery protocol to nodes
that do participate in the protocol.

After studying the proposal, it was decided that the message format and
the message processing rules were complex enough that implementing them in
Ahoy would add to the complexity of the prototype, without significant benefit
to Ahoy. Thus, it was decided to keep the existing, simple message formats.

5.5.6 Returned Information

Ahoy nodes respond to queries by sending a response message for every matching
service that is discovered. These response messages contain the IPv6 address
and port number at which the service can be contacted. This has been ade-
quate for our purposes. However, there is certainly other useful information
that could be contained in response messages, such as transport or applica-
tion protocol identifiers or quality of service information. In case Ahoy is used
on non-IPv6 networks, response messages will have to be adapted accordingly.
Also, the information that response messages contain could be made depen-
dent on parameters present in the query. This might be an interesting topic for
further research.

30

5.5.7 Unicast/Broadcast Query Propagation

Ahoy works most efficiently in a network that supports both unicast and broad-
cast messaging. Both of these mechanisms could be used for propagating queries.
Broadcast propagation requires only a single message to be sent, but that mes-
sage will be received by all neighbors, not just the neighbors that needed to
get it. Unicast sends the message to only those neighbors that need to get the
message, but may require multiple messages to be sent.

Whether broadcast propagation or unicast propagation is more efficient is
likely to depend on the specifics of the network. For example, broadcast prop-
agation is probably a good choice for wireless networks, because any message
would probably be received by several neighbors, even if it were only addressed
to one of them. On the other hand, unicast messages not destined for the
node receiving them can be rejected early, saving power compared to broadcast
messages, which have to be processed all the way up to the application layer.
Unicast messages also allow different time-to-live values to be used per desti-
nation address, depending on how many hops away a match is expected to be
found.

Rather than fixing the choice of broadcast or unicast, Ahoy allows nodes to
use either mechanism for query propagation. The prototype allows the mecha-
nism to be selected using the broadcast-queries configuration parameter.

5.5.8 Find-Any vs. Find-All

For some applications, it is desired to find all nodes advertising a certain service.
For other applications, finding just a subset, or even just one, of these nodes
is enough. Ahoy propagates queries as long as the time-to-live field permits it,
resulting in all (or most) nodes in range that advertise a service being discovered.
If the application requires only one or a few responses, network traffic could be
reduced by only propagating queries if no local match were found. This would
result in a subset of all nodes with matching services being found. Ahoy offers
no way to request this behavior, but it could be a useful feature to add in a the
future.

31

6 Requirements

In order to send the various types of message used by Ahoy, the network layer
must support certain features. This section discusses these requirements, how
the platform chosen to implement Ahoy on meets the requirements, and the
alternative platforms that were considered.

6.1 Required Features

The following features are required to implement the protocol specified in Sec-
tion 5:

• To broadcast announcements, a node needs a way to send a message to all
its neighbors. This can be accomplished through a broadcast mechanism,
or a combination of unicast messaging and an explicit list of neighbors.

• To send queries, nodes need to be able to send messages to their neigh-
bors. This can be accomplished through broadcast messaging or unicast
messaging.

• Responses to queries may need to traverse several hops before reaching
the node that originally sent the query. As specified, the protocol requires
routing to deliver responses. If the alternative of returning responses along
the query path (described in Section 5.5.1) is implemented, the routing
requirement can be dispensed with.

It is assumed that communication is bidirectional, that is, if node A can send
a message to node B, then node B can also send a message to node A. The
protocol can still work in the presence of unidirectional links, but some messages
will be wasted, because they will be sent to neighbors that cannot be reached.
Also, unless all nodes a query would need to traverse to reach a node offering a
service lie within depth hops from that node in both directions, the query will
fail to discover the service.

6.2 Platform

The initial plan was to implement Ahoy in the context of the JXTA peer-to-peer
framework [5]. If the protocol could have been used as a drop-in replacement
for JXTA’s built-in discovery protocol, a number of existing application written
for the JXTA platform would have been readily available as test cases. Also,
JXTA is programming language and platform-independent, which are desirable
properties for the discovery protocol, too.

Unfortunately, it turned out that JXTA did not provide all the features
required to implement Ahoy. JXTA abstracts from the physical locality of nodes
and provides no way to broadcast a message to all neighboring nodes or send a
message without routing. Also, JXTA’s service discovery protocol is specified to
make use of XML [18] messages, which are rather verbose. Since small message
size is a key reason for using Bloom filters, such verbosity is undesirable.

After JXTA had been discarded as an implementation environment, it was
decided to implement the protocol on top of UDP [19]. UDP is lightweight,
standardized, widely implemented and used, time tested, and well documented.

32

UDP does not provide much of the functionality that JXTA provides, and also
imposes few requirements on message formats and provided functionality. This
means that the flexibility to meet the requirements set out in Section 6 is there,
but additional choices must be made regarding auxiliary protocols and message
formats.

UDP can be layered on top of either IP version 4 (IPv4) [20], or IP version
6 (IPv6) [1]. IPv6 was chosen for the initial work, with an option to support
IPv4 later. The reason for this choice was the expectation that IPv6 will be
used more and more often in future research on mobile networking and future
network nodes.

There are many programming languages that provide access to UDP and
IPv6. For this project, Ruby [21] was chosen as an implementation language.
Ruby is a simple but powerful language that is easy to learn and use allows
programs to be written in a clear and concise manner. This makes programs
written in Ruby easy to understand and adapt, which was the main reason for
choosing Ruby.

For testing purposes, a virtual ad-hoc network of virtual computers was set
up. This was done using User Mode Linux [22]. Each of the virtual machines in
this network ran a minimal installation of Debian GNU/Linux [23], augmented
with Ruby and the prototype being developed.

Routing between the virtual machines was performed by the olsr.org imple-
mentation [24] of the OLSR [25] routing protocol. This implementation supports
IPv6 and runs on a number of platforms.

The chosen platform meets the requirements set out in Section 6.1 as follows:

• The ability to broadcast announcements to neighbors is provided by UDP
datagrams sent to the IPv6 ip6-allnodes multicast address ff02::1. This
takes the announcements to all nodes up to one hop away from the sender,
exactly as intended.

• To send queries, either broadcast messages or unicast messages could be
used. UDP/IPv6 provides both of these: broadcast propagation of queries
can be performed by sending them to ff02::1 (as above for announce-
ments), whereas unicast propagation of queries can be performed by send-
ing UDP datagrams directly to the IPv6 address of the neighbors intended
to receive the queries.

• Responses can be sent using UDP datagrams, provided that a routing
protocol is available to deliver the datagrams to nodes multiple hops
away. OLSR was used as a routing protocol while running the tests in
this project, but other routing protocols for ad-hoc networks, such as
AODV [26] or DSR [27] could have been used instead.

6.3 Alternatives

6.3.1 Lower-Layer Messaging

Ahoy nodes use UDP over IPv6 for communicating with one another. An alter-
native would be to send messages at a lower level. For example, raw Ethernet
frames could be used for communication (in this case, responses should prob-
ably be returned along the query path, as described in section 5.5.1). This

33

would save tens of bytes of overhead per message, which is quite significant,
considering that many Ahoy messages are only a few bytes long.

Unfortunately, using raw Ethernet frames has a number of drawbacks. The
programming interface for sending and receiving Ethernet frames is not stan-
dardized across operating systems, which means that using raw Ethernet frames
for communication would make the prototype non-portable. Secondly, many
programming languages do not contain support for raw Ethernet messaging,
which would complicate the creation of alternative implementations of the Ahoy
protocol, if it were to use raw Ethernet frames. Finally, sending and receiving
raw Ethernet frames requires root privileges on most Unix-like systems, which
would severely increase the security risk of running an Ahoy implementation,
and should generally be avoided if possible. UDP has none of these drawbacks,
and was thus seen as a better choice for implementing the prototype.

6.3.2 Non-Unix Platforms

Most of the development work on the Ahoy prototype was done on Debian
GNU/Linux. Many other platforms could have been chosen, for example, Mi-
crosoft Windows (which runs on the majority of personal computers), Microsoft
Windows Mobile (which runs on many PDAs and Smartphones), or Java 2 Micro
Edition (which runs on many mobile phones).

Debian GNU/Linux was chosen because the author is familiar with it, and,
being a Unix-like system, code developed for it is easily ported to other Unix-
like systems, such as Mac OS X. Also, GNU/Linux systems can be found on
computers ranging from small embedded systems to supercomputers. Thus,
developing the code on a GNU/Linux system produces code that runs on a
large variety of systems in various classes.

By comparison, code developed for Microsoft Windows, Microsoft Windows
Mobile, or Java 2 Micro Edition is not often easy to port to different platforms,
and these platforms themselves have a relatively limited scope compared to the
Unix-like platforms that the present implementation targets.

34

7 Implementation Report

This section gives a chronological account of the design and implementation of
Ahoy. It also discusses the larger problems that were encountered, and the ways
these problems were solved.

During the planning stages, the implementation environment was selected
and a rough design for the implementation was made. The choices that were
made for the implementation environment, as well as the motivations for them,
are discussed in Section 6.2.

The initial design of the protocol consisted of three messages: announce-
ments, queries, and responses, with formats and functions similar to those dis-
cussed in Section 5.3. Announcements would have to be broadcast periodically,
so that changes in the reachability of nodes could be detected and handled. Also,
announcements would not be broadcast immediately, but only after a minimum
amount of time had elapsed since the last announcement. This was done to
prevent announcement storms.

The design of the implementation consisted of a daemon that communicates
with other nodes on the network and maintains information about locally an-
nounced services, as well as a client protocol allowing clients to connect to the
daemon using a local socket (using the AF LOCAL address family, historically
known as AF UNIX). The client protocol would be implemented by a Ruby mod-
ule that could be used to easily implement clients, and three basic clients would
be provided: one that announces a service, one that revokes an announced ser-
vice, and ones that runs a query and displays the addresses of discovered service
instances.

The stable branch of Debian GNU/Linux was chosen as the main platform
for implementation and testing, with additional testing being performed on
OpenBSD and Mac OS X.

The first steps in implementing Ahoy consisted of an implementation of bit
vectors (data structures holding an arbitrary number of bits, each individually
addressable) and Bloom filters (consisting of a bit vector and an array of hash
functions), and implementing the insert! and contains? methods which
implement the two operations defined on Bloom filters: inserting an item, and
testing if the filter contains an item.

After Bloom filters had been implemented and tested, a skeleton of the Ahoy
daemon was created, supporting the sending of Bloom filters to neighboring
nodes and integrating received filters with the node’s own filters. Next, a client
interface was added, and clients were created to enable announcing services,
querying, and revocation from the command line. The sending of queries and
responses over the network was implemented and tested using the clients.

Up to this point, addresses had been represented in the format used by the
struct sockaddr data structure from the C programming language, which is
easily accessible from Ruby. However, this structure differs between operating
systems, which was detected using cross-platform testing. Thus, a platform-
independent representation (described in Section 5.3.1) was invented. This rep-
resentation was subsequently used in both the main Ahoy protocol and the
client protocol used in the communication between user programs and the Ahoy
daemon.

A timeout was added to queries in the client code, so that clients would
have an indication that no more responses would be coming. A timeout was

35

also added in the daemon, to prevent clients from consuming resources of the
daemon indefinitely.

So far, real computers in a real network had been used for testing. However,
the network being used was a single-hop network with only a few nodes on it.
To enable testing on multi-hop networks and using larger numbers of nodes, it
was decided to perform testing using virtual nodes and networks.

Two software packages that provided virtual nodes and networks were iden-
tified: Xen [28] and User Mode Linux[22]. Although Debian packages were
available for both, they proved problematic: the packages installed without any
problem, but User Mode Linux would fail to boot virtual machines, whereas
the Xen packages did not support IPv6, preventing the implementation of Ahoy
from working. Attempts to compile Xen from the available source code consis-
tently failed. Eventually, it was found that Debian etch (which was, at the time,
in testing, with the eventual goal of becoming the new stable Debian release)
included working User Mode Linux packages, and so the main testing platform
was switched to etch.

The first tests in a multi-hop environment revealed lots of unnecessary query
traffic, due to queries being propagated again and again, until their time to live
ran out. This was remedied by preventing nodes from propagating a query back
to the neighbor it was received from, and by adding a cache for seen queries, so
that queries already processed could be discarded quickly.

By now, the implementation had gotten reasonably complex, with a number
of values (such as the width of the used Bloom filters and the number of hops
to propagate them to) hard-coded in it. Support for loading the configuration
from a file was added, and many of the previously hard-coded parameters were
made configurable, with the previously hard-coded values used as defaults.

The minimum and maximum delay for announcements were implemented.
The purpose of the minimum delay is to prevent overloading the network; the
maximum delay allows for the removal of information about nodes that have
not sent announcements for some time.

At this point, the keep-alive and update-request messages were added. The
motivation for the keep-alive message is that, any time an announcement is sent
because the maximum delay has been reached, unnecessary traffic is generated:
the full Bloom filters are sent out, even though all the information they hold
should already be present at neighboring nodes. Since the purpose of this peri-
odic broadcast is only to inform neighbors of the presence of the sending node, a
new, small message was added just for that purpose. This message includes the
generation-id of the latest announcement, so that nodes that have not received
that announcement will notice. The update-request message allows them to
request the latest announcement to be sent to them.

A random amount of jitter (with a configurable range) was added to the time
between keep-alive messages to make collisions less likely. The code for selecting
generation-ids and query-ids was changed to select random initial ids, and use
random positive increments for new ids. This discloses slightly less information
about nodes, and may prevent certain types of attacks.

The lifetime of service announcements coming from clients was limited, so
that services will be revoked even when a client fails to do so explicitly (e.g.
because the client crashed). The client module was updated to automatically
re-announce services. The re-announcing stops when the main program exits or
explicitly requests the service to be revoked.

36

8 Testing Report

Testing has been performed throughout the development of Ahoy. After every
feature that was added, tests were run to verify that the feature behaved as
intended, and did not disrupt existing behavior in undesired ways. During
some of the tests, measurements were performed on the network to establish
what messages were being sent and in what order, the number of messages
being sent, and the size of the messages being sent.

A number of different test setups were used. The simplest tests were run
on a single machine. These tests helped catch some bugs before more com-
plex test setups were used. These tests used actual computers running Debian
GNU/Linux 3.1 (woody), OpenBSD 3.8, or Mac OS X 10.4 (Tiger).

Most tests were run on a virtual network consisting of five virtual machines.
The virtual networks and virtual machines were created using User-Mode Linux,
and each of the virtual machines was running Debian GNU/Linux 4.0 (etch).
Some of these tests used a regular grid structure, some tests used a topology
where every node could reach every other node, and some tests used a script
that periodically and randomly changed reachability to simulate mobility.

A number of tests were performed using virtual networks consisting of thir-
teen virtual nodes; the maximum number of nodes possible within the memory
constraints on the machine running the tests. The tests being performed were
identical to those performed under the five-node setup. As in the five-node tests,
regular grid structure, full reachability, and randomly changing topologies were
used.

The results of the tests show the implementation to work as expected. An-
nouncements are being sent when knowledge of available services changes and in
response to update requests. Update requests are sent when the Ahoy daemon is
started, and in response to missed announcements. Keep-alive messages are sent
at regular intervals, subject to random jitter. Queries are propagated as long
as the time-to-live allows it and as long as there are neighbors whose latest an-
nouncements contain matches for the requested service name. Duplicate queries
being received by nodes do not result in further network traffic. Responses are
sent when queries reach nodes that offer a requested service. Services that were
not re-announced by user programs are properly timed out.

Besides verifying that the prototype worked as expected, some data was
also gathered on the amount of network traffic generated. For each of the test
setups discussed below, some graphs visualizing the network traffic are shown,
as well as the average number of bytes per second generated by Ahoy and the
total network traffic (byte counts include UDP, IPv6, and Ethernet headers).
Virtually all network traffic not generated by Ahoy is generated by OLSR (the
routing protocol used), with a negligible portion of the traffic being ICMPv6 [29]
control messages. These numbers give an impression of the impact Ahoy has on
the network.

For each of the test setups, three different scenarios were run. In the first
scenario, Ahoy is idle, and nodes only exchange keep-alive messages, update re-
quests, and announcements as appropriate (the latter two message types are only
used when the topology changes). In the second scenario, one node announces
a service, waits 60 seconds, revokes the announced service, waits 60 seconds,
announces it again, etc. This causes announcements to be sent. In the third
scenario, one node is offering a service, and another node performs a query for

37

that service every 20 seconds. This scenario generates query messages.
Network packets were captured with TCPDUMP [30]. Each node partici-

pating in the test captured the packets it sent and logged them to a file. After
the test, the files from the individual nodes were combined into a single file
using the mergecap utility from Wireshark [31]. The combined network dump
was then used for further analysis. The average number of bytes per second
(both for Ahoy and for all traffic) was extracted using Wireshark. A combina-
tion of TCPDUMP and a Ruby script was used to convert the packet data to a
table listing the number of bytes sent for each second of the test. Graphs were
generated from this data using Gnuplot [32].

The tests were run with the default parameters for Ahoy, except that broadcast-
queries was set to true.

8.1 Five Nodes, Full Connectivity

The first tests were run in a simulated 5-node network with full connectivity.
Every node can reach every other node directly. Figure 14 depicts one possible
topography of such a network. Note that, for these tests, it does not matter
what the network actually looks like; only the reachability of nodes is important.

Figure 14: A five-node network with full connectivity.

Figures 15a through 15c show the network traffic generated in this setup.
From left to right, they correspond to the idle scenario, the announce-revoke
scenario, and the query scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 15: Ahoy traffic in a five-node network with full connectivity.

38

The graphs clearly show that keep-alive messages generate very little traffic.
In the idle scenario, the traffic generated by Ahoy is about 23 bytes per second
on average (about 5 bytes per second per node). This compares to about 402
bytes per second of total traffic.

In the announce-revoke scenario (figure 15b), Ahoy traffic peaks every 60 sec-
onds. This corresponds to announcement messages being sent when a service is
introduced or removed. Also, the announcements inhibit the sending of keep-
alive messages, which is expressed in the graph by the empty spaces following
the spikes. In this scenario, Ahoy generated an average of 50 bytes per second
(10 bytes per second per node). The total amount of traffic was 412 bytes per
second on average.

In the query scenario (figure 15c), Ahoy generated an average of 52 bytes
per second (about 10 bytes per second per node). The spikes that occur when
queries are sent (every 20 seconds) are clearly visible. The average of all traffic
was 437 bytes per second.

These measurements show the impact of Ahoy on a network to be very small.
In fact, when the network is running OLSR, the extra traffic that running Ahoy
generates is an order of magnitude less than the traffic already present in the
network. Of course, other routing protocols may generate much less traffic,
causing the relative impact of Ahoy to be greater.

8.2 Five Nodes, Grid Structure

Further tests were conducted in a simulated 5-node network with grid structure.
In this setup, every node can reach every other node, but, in some cases, the
message has to be forwarded by an intermediate node. The structure of this
network is depicted in figure 16.

Figure 16: A five-node network with a regular grid structure. In the announce-
revoke scenario, the rightmost node announces and revokes the service. In the
query scenario, the rightmost node provides the service, whereas the leftmost
node queries for it.

Figures 17a through 17c show the network traffic volume that Ahoy generates
in this scenario. As before, the left figure corresponds to the scenario where
Ahoy is idle; no services are being announced or revoked and no queries are

39

run during the packet capturing. The middle figure shows the announce-revoke
scenario, and the right picture shows the query scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 17: Ahoy traffic in a five-node network with a regular grid structure.

The graphs are similar to those in the full connectivity setup, which means
the same comments apply. The main apparent difference is that graph 17c has
sharp, tall spikes, whereas in the corresponding graph for the full connectivity
scenario (15c), the peaks are lower, but wider. This is probably a result of the
way the graphs are generated rather than an actual difference in the traffic:
messages that are captured in the same second will yield tall, narrow spikes,
whereas messages that are captured in subsequent seconds will yield lower, wider
peaks.

Ahoy generated 23 bytes per second (about 5 bytes per second per node) in
the idle scenario, where the total amount of traffic was 337 bytes per second
on average. In the announce-revoke scenario, Ahoy traffic averaged to 51 bytes
per second (about 10 bytes per second per node), and total traffic to 337 bytes
per second. The amount of Ahoy traffic in the query scenario was 57 bytes per
second (about 12 bytes per second per node) on average, compared to a total
of 406 bytes per second.

The results obtained from this setup are similar to the results obtained from
the full connectivity setup. In particular, the amount of Ahoy traffic generated
in the idle and announce-revoke scenarios is virtually the same between the
two setups. This is to be expected, as these scenarios generate only broadcast
messages whose number and size does not change between these two setups.

The amount of Ahoy traffic in the query scenario is higher in the grid setup
(57 bytes per second) than in the full connectivity setup (52 bytes per second).
The difference can be explained by the fact that response messages have to
be forwarded to get from the rightmost node (the node providing the service)
to the leftmost node (the node sending the queries). The size of the response
message is 87 bytes (25 bytes payload plus 62 bytes lower level headers), and
one is sent every 20 seconds. This generates about 5 bytes per second of extra
traffic; exactly the difference observed between the two setups.

Another difference between the results from the grid setup and those from
the full connectivity setup is that non-Ahoy traffic is lower in the grid setup.
This is due to OLSR sending smaller messages in the grid setup than it does in
the full connectivity setup.

40

8.3 Five Nodes, Dynamic Structure

The last series of tests on networks consisting of five nodes was done with reach-
ability randomly changing every 30 seconds. This results in update requests
and announcements being sent whenever previously unreachable nodes become
reachable. Consequently, the volume of network traffic generated during these
tests can be expected to be higher than during the other five-node tests.

The graphs in figures 18a, 18b, and 18c represent the traffic generated in the
idle scenario, the announce-revoke scenario, and the query scenario, respectively.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 200

 400

 600

 800

 1000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 18: Ahoy traffic in a five-node network with a dynamic structure.

The graphs generated by this setup have visibly more spikes than the graphs
in the static setups. This is due to the unicast update-request and unicast an-
nouncement messages that are sent when a node discovers a new neighbor. Note
that, although the network topology is changed every 30 seconds, a new neigh-
bor is only discovered when a keep-alive message is received from it. Since the
time at which keep-alive messages are sent is largely controlled by a randomizer,
the peaks corresponding that occur in response to neighbor discovery are not
evenly spaced.

In the idle scenario, the amount of Ahoy traffic was 36 bytes per second
(about 7 bytes per second per node) on average. About 13 bytes per second of
this was unicast traffic (update-requests and announcements in response to the
discovery of new neighbors), with the remaining 23 bytes per second being the
same keep-alive traffic that was also observed in the grid and full connectivity
setups. The average of all traffic was 510 bytes per second in this scenario.

In the announce-revoke scenario, Ahoy generated an average of 49 bytes per
second (about 10 bytes per second per node). As in the idle scenario, the unicast
traffic was 13 bytes per second. This leaves 36 bytes per second of broadcast
traffic; less than in the static setups. The difference is probably due to not all
nodes being able to reach all other nodes in 4 hopsat all times. This would
cause information about availability of the service not to be propagated to all
nodes. The total amount of traffic was 480 bytes per second on average.

In the query scenario, the Ahoy traffic amounted to 70 bytes per second
(14 bytes per second per node), of which 23 bytes per second were unicast
traffic. Furthermore, an average of 3 bytes per second were due to response
messages. This is less than in previous setups, because in the dynamic setup,
the service cannot always be successfully discovered. The average of all traffic
in this scenario was 521 bytes per second.

41

8.4 Thirteen Nodes, Full Connectivity

Besides tests with five-node networks, tests were also conducted using thirteen
nodes; the maximum number feasible with available memory. The first series of
tests with thirteen nodes were performed in a virtual network with full connec-
tivity.

The scenarios are the same as the ones used in the five node setups. Figures
19a through 19c depict the traffic generated in each of the scenarios. Note that
the graphs are on a different scale: where the top of the graphs is 1000 bytes
per second in the five node setups, here it is 2000.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 19: Ahoy traffic in a thirteen-node network with full connectivity.

Unsurprisingly, the thirteen node setup generates more traffic than the five
node one. In the idle scenario, 60 bytes per second of Ahoy traffic are generated.
In the announce-revoke scenario, this number rises to 81 bytes per second. As
with the five node setup, the query scenario generates most traffic; in this case,
an average of 144 bytes per second.

Calculating how much traffic is generated per node per second in each sce-
nario leads to the following numbers: about 5 bytes per node per second in
the idle scenario, about 6 bytes per node per second in the announce-revoke
scenario, and about 11 bytes per node per second in the query scenario.

The amounts of Ahoy traffic per node in this setup are similar to those com-
puted in the five node, full connectivity setup, except for the announce-revoke
scenario, which yields a lower value here. An explanation for this can be found
in the ping-pong effect, where service information is propagated up and down
between neighboring nodes. This happens, because, when a node announces
a service that it knows about, the neighbors of that node will announce that
there is knowledge of that service one hop away from them, which will cause the
original node to announce that there is information about the service two hops
away, and so on. The ping-pong effect ceases once the distance at which the
information is found reaches the value of the depth parameter. This requires
the same number of distinct announcements to be sent in the five-node case as
in the thirteen-node case. However, in the thirteen-node case, there are more
nodes, and thus, the traffic per node is lower.

Total traffic was 1809 bytes per second in the idle scenario, 1511 bytes per
second in the announce-revoke scenario, and 1756 bytes per second in the query
scenario. As in the five node setups, Ahoy traffic is well below total network
traffic. In fact, the difference has increased: where Ahoy traffic per node has
remained the same or decreased, OLSR traffic per node has increased.

42

8.5 Thirteen Nodes, Grid Structure

More measurements were performed in a network of thirteen nodes, with the
grid structure depicted in figure 20.

Figure 20: A thirteen-node network with a regular grid structure. In the
announce-revoke scenario, the service is announced and revoked by the upper
right node. In the query scenario, the service is provided by the upper right
node, and queried for by the lower left node.

The generated network traffic is shown in figures 21a through 21c.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 21: Ahoy traffic in a thirteen-node network with a regular grid structure.

The measured average number of bytes per second of Ahoy traffic was 61
(approximately 5 per node) in the idle scenario (figure 21a), 117 (9 per node) in
the announce-revoke scenario (figure 21b) and 99 (approximately 8 per node)
in the query scenario (figure 21c).

Comparing the results obtained in this setup with those obtained in the
thirteen node, full connectivity setup, a first observation is that traffic in the
idle scenario has remained almost the same. This is in line with expectations,

43

because an equal number of keep-alive messages should be sent in both setups.
The announce-revoke scenario generates markedly more traffic in the grid

setup than in the full connectivity setup. This may be somewhat surprising,
given that the traffic generated in the corresponding setups using five nodes is
equal. However, the difference can be explained by observing that the ping-
pong effect causes more messages to be sent in a grid network than in a full
connectivity network, because, in a grid network, not all messages are received
by all nodes. In the five-node setups, this difference is not apparent, because of
the limited depth of the network.

Compared to the full connectivity setup, the grid setup generates much less
traffic in the query scenario. This is contrary to the results obtained from the
corresponding five-node scenarios, where response forwarding caused the grid
setup to generate more traffic than the full connectivity setup. The explanation
for this observation can be found in the hop limit imposed on queries: in the
thirteen-node grid setup, this causes the query not to be propagated by certain
nodes, whereas in the depth of the five-node network is small enough that the
query is propagated by every node.

The average of all traffic generated in this setup was 1436 bytes per second
in the idle scenario, 1535 bytes per second in the announce-revoke scenario, and
1560 bytes per second in the query scenario.

8.6 Thirteen Nodes, Dynamic Structure

The last series of tests were performed on a thirteen node network with con-
nectivity randomly changing every 30 seconds. The traffic graphs are shown in
figures 22a through 22c.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(a) Traffic generated in the
idle scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(b) Traffic generated in the
announce-revoke scenario.

 0

 400

 800

 1200

 1600

 2000

 0 60 120 180 240 300

tr
af

fic
 (

by
te

s/
s)

time (s)

Ahoy traffic

(c) Traffic generated in the
query scenario.

Figure 22: Ahoy traffic in a thirteen-node network with a dynamic structure.

Ahoy generated an average of 145 bytes per second (60 in broadcast traffic,
85 due to changes in network topology) in the idle scenario, 204 bytes per
second (79 in broadcast traffic, 125 due to changes in network topology) in the
announce-revoke scenario, and 226 bytes per second (127 in broadcast traffic, 4
in responses, and 95 due to changes in network topology) in the query scenario.

Translated to traffic generated per node, the numbers are 11 bytes per second
(5 in broadcast traffic, 6 due to changes in topology) for the idle scenario, 16
bytes per second (6 in broadcast traffic, 10 due to changes in topology) for the
announce-revoke scenario, and 17 bytes per second (10 in broadcast traffic, less
than 1 in responses, and 7 due to changes in topology).

44

As expected, this setup generates the most traffic of all, owing to the update-
requests announcements sent in response to changes in connectivity. When that
traffic is discounted, traffic in the idle scenario is the same as always, as expected,
and traffic in the announce-revoke and query scenarios is lower, which is also
expected, because some nodes will sometimes be more than depth hops from
an announced service, causing messages not to be propagated to them.

The total amount of traffic averaged 2938 bytes per second in the idle sce-
nario, 2945 bytes per second in the announce-revoke scenario, and 3017 bytes
per second in the query scenario. Thus, in all scenarios, Ahoy traffic is well
below 10% of the total amount of traffic.

8.7 Summary

The conclusions that can be drawn from the measurements on networks of thir-
teen nodes are similar to those drawn after the measurements on networks con-
sisting of five nodes. In a network running OLSR, Ahoy only adds relatively
little to the traffic in the network. Moreover, the amount of Ahoy traffic each
node generates is is about the same (in idle mode) or less (in the presence of
announcements or queries) in thirteen-node networks as in five-node networks.
This bodes well for the scalability of Ahoy.

45

9 Integration with JXTA

As a test case and a demonstration of the successful implementation of Ahoy,
it has been integrated with JXTA. JXTA is a peer to peer framework created
by Sun Microsystems. Two concepts from JXTA are key to the integration
of JXTA and Ahoy: pipes and peer groups. Pipes are the abstraction JXTA
peers communicate over. These pipes can be unicast pipes or propagate pipes.
Unicast pipes are used for sending messages from one JXTA peer to another,
whereas propagate pipes propagate messages to all peers in a peer group.

Peer groups are named groups of peers that participate in a shared service.
All JXTA peers are members of the NetPeerGroup, but they can simultaneously
be part of any other number of peer groups. For example, one peer could be
part of the NetPeerGroup, a peer group hosting a distributed file system, and
another group performing a distributed computation.

JXTA’s pipe abstraction is implemented on top of a number of transports.
One such transport is the TcpTransport, which listens on a TCP socket, and
communicates with other JXTA peers by connecting to their TCP sockets.
Transports implement methods for sending messages to specific addresses (uni-
cast messages) and methods for sending messages to all members of a peer group
(propagate messages). The integration of Ahoy and JXTA consists of altering
the mechanism by which propagate messages are sent, without affecting the way
unicast messages are handled. Figure 23 illustrates JXTA and the way Ahoy
was integrated into it.

Unicast
Pipes

Propagate
PipesSecure

Unicast
Pipes

JXTA

High level constructs: sockets,
discovery service, etc.

Transports: TCPTransport,
HTTPTransport, etc.

Ahoy

Figure 23: Ahoy integrated with JXTA.

To integrate Ahoy with JXTA, an Ahoy client has been developed in Java.
Because Java does not support AF LOCAL sockets, the client uses TCP sockets to
communicate with a small daemon called the ahoy-tcp-interface. This dae-
mon relays messages between the Java client and the Ahoy daemon’s AF LOCAL
socket.

When a JXTA peer joins a peer group, the integrated Ahoy client is used to
send out an announcement to the Ahoy daemon. This announcement contains
the name of the peer group and the address on which the TcpTransport of the
peer is listening for incoming connections. One such announcement is sent for
every IPv6 address the TcpTransport is listening on.

When a JXTA peer wants to send a propagate message, the integrated Ahoy
client is used to perform a query for the destination peer group name. For every

46

response to this query, the message is sent to the address contained in the
response, using the TcpTransport. After being processed by Ahoy, the message
is handed to the existing transports for the same processing that would have
occurred in an unmodified version of JXTA.

The JXTA integration has been tested using the discovery tutorial shipped
with JXTA and the JXTA shell [33], as well as with context publishing and
subscription classes developed as part of the AWARENESS project [34].

47

10 Conclusions

The successful implementation of Ahoy shows that a service discovery protocol
based on Bloom filters is, indeed, feasible. No part of the original protocol intro-
duced in [2] and [3] was found in need of being altered because of implementation
concerns.

To implement the protocol from [2] and [3], a number of issues had to be
clarified. The original idea encompassed announcements using Bloom filters,
as well as query and response messages, but did not specify the exact formats
of these messages, nor how services are designated, nor what information is
returned for discovered services. Ahoy addresses all of these issues, and extends
the original protocol with keep-alive and update-request messages for efficiency
reasons.

A number of design choices where identified. In some cases, various alterna-
tive choices were investigated. Sending service names in queries was chosen in
favor of sending Bloom filters in queries, and service names in responses, because
the former choice was expected to result in lower network load. Keep-alive and
update-request messages were included in the protocol, even though the proto-
col could work without them, because they allow network topology changes to
be detected more quickly and/or with generating less network traffic. A cus-
tom message format was used, rather than building on top of the Generalized
MANET Packet/Message format, because it was felt to increase complexity of
the message parser for no appreciable gain.

In the case of query propagation, two choices are offered as configuration
options: unicast and broadcast. The expectation is that unicast is more efficient
in some situations, and broadcast in others. Therefore, the decision is left to the
user. The choice need not be uniform among nodes; the protocol works without
any problems if different nodes use different propagation mechanisms.

48

11 Suggestions for Future Work

New and existing applications could be built on top of Ahoy. This could be done
by integrating an Ahoy client in these applications, or by integrating Ahoy in an
existing application programming interface or protocol. One possibility would
be the development of an compatibility layer for existing applications using the
ZeroConf protocol, such as can be found on Apple’s Mac OS X [35] and the
KDE [11] and GNOME [12] desktop environments. This would allow existing,
unmodified applications to use Ahoy for service discovery.

Ahoy currently only works with IPv6: it uses UDP/IPv6 for sending and
receiving messages, and the addresses included in queries and responses are IPv6
addresses. Support for other types of address could be added, for example IPv4
addresses or Ethernet MAC addresses. This would extend the utility of Ahoy
to other types of network.

In the current version of Ahoy, responses to queries consist of an IPv6 address
and a port number. This is adequate for services that are built on top of UDP
or TCP and where the node requesting the service knows which one of these
two to use. It could be useful to include a protocol identifier in the response,
or to define completely different response types, for example URIs for services
implemented on top of XML-RPC [36], or CORBA [37] identifiers.

Several useful features could be added to Ahoy. In particular, clients may be
offered more control over queries by means of additional query parameters. In
the current implementation of Ahoy, queries are propagated to all nodes within
depth hops from the querying node that may offer the requested service, and
no guarantees are given about the order in which results are returned. It is
conceivable that clients are only interested in one response, or that clients wish
responses to be in order of increasing hop count. Query parameters could be
added that request nodes not to further propagate a query if a local match is
found, or to perform an expanding ring search. Query parameters could also
be used to match services by other attributes than service name (e.g. quality
of service), or to request that information other than the service address is
provided in response messages.

Another possible project would be integration of Ahoy with a reactive rout-
ing protocol such as AODV [26], where it could help reduce network traffic due
to route requests.

There are several parameters to the operation of Ahoy that must be identical
for all nodes in the network: the number of hops included in each announce-
ment, the width of the Bloom filters being used, the number of hash functions
being used, etc. Optimal values for these parameters exist, but depend on the
properties of the network and the services being offered. Currently, there is no
way for nodes to automatically agree upon these values, and no way for nodes
to change the values in response to changes on the network. Work could be
done to investigate the possibility of developing and integrating an agreement
protocol that would have Ahoy nodes automatically decide on common values
and react to changes in the network, so that correct and/or efficient operation
is reached without user intervention.

Ahoy could be ported to different platforms, such as Microsoft Windows,
Microsoft Windows Mobile, or Java 2 Micro Edition.

More measurements could be performed on the traffic generated by the Ahoy
prototype. The measurements described in this report were performed on small

49

networks. Measurements on larger networks could provide more insight in the
scalability of Ahoy.

50

Appendix A Obtaining and Installing Ahoy

The prototype implementation of Ahoy is available online from
http://ahoy.sourceforge.net/.

Instructions for building, installing, and using the prototype are also pro-
vided there.

51

List of Figures

1 A traditional infrastructure network. 4
2 A mobile ad-hoc network. 5
3 An empty Bloom filter. 8
4 A Bloom filter containing ftp. 8
5 A Bloom filter containing ftp and http. 9
6 Aggregation of service information. 10
7 Distribution of service information. 10
8 Distribution of a query. 11
9 Distribution of a response. 11
10 An empty Bloom filter of width 8. 17
11 Bloom filter containing ftp . 17
12 Bloom filter containing ftp and http 18
13 Aggregation of service information 18
14 A five-node network with full connectivity. 38
15 Ahoy traffic in a five-node network with full connectivity. 38
16 A five-node network with a regular grid structure. 39
17 Ahoy traffic in a five-node network with a regular grid structure. 40
18 Ahoy traffic in a five-node network with a dynamic structure. . . 41
19 Ahoy traffic in a thirteen-node network with full connectivity. . . 42
20 A thirteen-node network with a regular grid structure. 43
21 Ahoy traffic in a thirteen-node network with a regular grid struc-

ture. 43
22 Ahoy traffic in a thirteen-node network with a dynamic structure. 44
23 Ahoy integrated with JXTA. 46

List of Tables

1 Wire format of an IPv6 address. 19
2 Wire format of an announcement message. 20
3 Wire format of a query message. 21
4 Wire format of a response message. 21
5 Wire format of a keep-alive message. 22
6 Wire format of an update request message. 23

52

List of Abbreviations

AODV Ad-hoc On-demand Distance Vector.

CORBA Common Object Request Broker Architecture.

DAML DARPA Agent Markup Language.

DARPA Defense Advanced Research Projects Agency.

DNS Domain Name System.

DNS-SD DNS Service Discovery.

DSR Dynamic Source Routing.

FTP File Transfer Protocol.

GNU GNU’s Not Unix!

HTTP HyperText Transfer Protocol.

IETF Internet Engineering Task Force.

IPv4 Internet Protocol, version 4.

IPv6 Internet Protocol, version 6.

KDE K Desktop Environment.

MANET Mobile Ad-hoc NETwork.

OLSR Optimized Link-State Routing.

OS Operating System.

PDA Personal Digital Assistant.

RPC Remote Procedure Call.

SMTP Simple Mail Transfer Protocol.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

URI Uniform Resource Identifier.

UTF-8 8-bit Unicode Transformation Format.

XML eXtensible Markup Language.

XML-RPC XML Remote Procedure Call.

53

References

[1] S. Deering and R. Hinden, “RFC 2460: Internet Proto-
col, Version 6 (IPv6) specification,” Dec. 1998. [Online]. Available:
http://www.faqs.org/rfc/rfc2460.html

[2] F. Liu and G. J. Heijenk, “Context discovery using attenuated bloom filters in
ad-hoc networks,” in Proceedings 4th International Conference on Wired/Wireless
Internet Communications, WWIC 2006, Bern, Switzerland, ser. Lecture Notes in
Computer Science, T. Braun, G. Carle, S. Fahmy, and Y. Koucheryavy, Eds., vol.
3970. Berlin: Springer-Verlag, May 2006, pp. 13–25.

[3] P. T. H. Goering and G. J. Heijenk, “Service discovery using bloom filters,” in
Proceedings of the twelfth annual conference of the Advanced School for Computing
and Imaging, Lommel, Belgium, B. P. F. Lelieveldt, B. R. H. M. Haverkort, C. T.
A. M. de Laat, and J. W. J. Heijnsdijk, Eds. Delft, Netherlands: Advanced
School for Computing and Imaging (ASCI), June 2006, pp. 219–227.

[4] “OPNET modeler,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.opnet.com/products/modeler/home-2.html

[5] “JXTA,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.jxta.org/

[6] Wikipedia, “Bloom filter — Wikipedia, the free encyclopedia,”
2006, [Online; accessed 16 December 2006]. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Bloom filter&oldid=93571095

[7] M. Rose, “UTF-8, a transformation format of ISO 10646,” June 1999. [Online].
Available: http://www.faqs.org/rfcs/rfc2629.html

[8] “Zero configuration networking (ZeroConf),” [Online; accessed 16 December
2006]. [Online]. Available: http://www.zeroconf.org/

[9] “Dns service discovery (DNS-SD),” [Online; accessed 16 December 2006].
[Online]. Available: http://www.dns-sd.org/

[10] “Bonjour,” [Online; accessed 16 December 2006]. [Online]. Available:
http://developer.apple.com/networking/bonjour/index.html

[11] “K Desktop Environment,” [Online; accessed 16 December 2006]. [Online].
Available: http://www.kde.org/

[12] “GNOME: The free software desktop project,” [Online; accessed 16 December
2006]. [Online]. Available: http://www.gnome.org/

[13] “Multicast DNS,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.multicastdns.org/

[14] F. Sailhan and V. Issarny, “Scalable service discovery for manet,” in PERCOM
’05: Proceedings of the Third IEEE International Conference on Pervasive Com-
puting and Communications. Washington, DC, USA: IEEE Computer Society,
2005, pp. 235–244.

[15] “DARPA Markup Language (DAML+OIL),” [Online; accessed 16 December
2006]. [Online]. Available: http://www.daml.org/

[16] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “GSD: A Novel Group-based
Service Discovery Protocol for MANETs,” in 4th IEEE Conference on Mobile
and Wireless Communications Networks (MWCN). Stockholm. Sweden: IEEE,
September 2002.

[17] T. Clausen, C. Dearlove, J. Dean, and C. Adjih, “Generalized MANET
packet/message format,” July 2006, [Online; accessed 16 December 2006]. [On-
line]. Available: http://www.ietf.org/internet-drafts/draft-ietf-manet-

-packetbb-02.txt

54

[18] “Extensible markup language (XML),” [Online; accessed 16 December 2006].
[Online]. Available: http://www.w3.org/XML/

[19] J. Postel, “RFC 768: User datagram protocol,” Aug. 1980. [Online]. Available:
http://www.faqs.org/rfcs/rfc768.html

[20] ——, “RFC 791: Internet Protocol,” Sept. 1981. [Online]. Available:
http://www.faqs.org/rfcs/rfc791.html

[21] “Ruby home page,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.ruby-lang.org/

[22] “User mode linux,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.usermodelinux.org

[23] “Debian,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.debian.org/

[24] “olsr.org,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.olsr.org/

[25] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),”
2003. [Online]. Available: http://www.faqs.org/rfcs/rfc3626.html

[26] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-
demand Distance Vector (AODV) routing,” 2003. [Online]. Available:
http://www.faqs.org/rfcs/rfc3561.html

[27] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad
hoc wireless networks,” in Mobile Computing, Imielinski and Korth,
Eds. Kluwer Academic Publishers, 1996, vol. 353. [Online]. Available:
citeseer.ist.psu.edu/johnson96dynamic.html

[28] “The xen virtual machine monitor,” [Online; accessed 16 December 2006].
[Online]. Available: http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[29] A. Conta and S. Deering, “RFC 2463: Internet Control Mes-
sage Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification,” Dec. 1998, obsoletes RFC1885. Status: DRAFT STAN-
DARD. [Online]. Available: ftp://ftp.internic.net/rfc/rfc1885.txt,

ftp://ftp.internic.net/rfc/rfc2463.txt,

ftp://ftp.math.utah.edu/pub/rfc/rfc1885.txt,

ftp://ftp.math.utah.edu/pub/rfc/rfc2463.txt

[30] “Tcpdump public repository,” [Online; accessed 14 January 2007]. [Online].
Available: http://www.tcpdump.org/

[31] “Wireshark: The world’s most popular network protocol analyzer,” [Online;
accessed 16 December 2006]. [Online]. Available: http://www.wireshark.org/

[32] “gnuplot homepage,” [Online; accessed 14 January 2007]. [Online]. Available:
http://www.gnuplot.info/

[33] “JXTA shell,” [Online; accessed 16 December 2006]. [Online]. Available:
http://shell.jxta.org/

[34] “Freeband communication,” [Online; accessed 16 December 2006]. [Online].
Available: http://www.freeband.nl/news.cfm?language=en&view=AWA&page=1

[35] “Mac OS X,” [Online; accessed 16 December 2006]. [Online]. Available:
http://www.apple.com/macosx/

[36] “XML-RPC homepage,” [Online; accessed 16 December 2006]. [Online].
Available: http://www.xmlrpc.com/

[37] Wikipedia, “Common object request broker architecture — Wikipedia,
the free encyclopedia,” 2006, [Online; accessed 16 December 2006].
[Online]. Available: http://en.wikipedia.org/w/index.php?title=Common-

Object Request Broker Architecture&oldid=94430695

55

